Mathematical logic (3) Natural deduction 自然演绎

本文最后更新于 2024年6月20日 下午

1. Language 语言组成

1.1 Alphabet 符号系统

Σ={(,),¬,,,,,p,q,r,}\Sigma = \{(,),\neg,\land,\lor,\to,\leftrightarrow,p,q,r,\dots\}

1.2 Formulas 公式

  1. Atoms p,q,r,s,p, q, r, s, \dots are formulas.
  2. If A,BA, B are formulas, then (¬A),(AB),(AB),(AB),(AB)(\neg A), (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B) are also formulas.

2. Inference Rules 推理规则

2.1 Reflectivity 自反

Σ{α}α\Sigma \cup \{\alpha\} \vdash \alpha

2.2 Rules for More

Name \vdash-notation inference notation
\to-elimination (e\to_e) If ΣND(αβ)\Sigma \vdash_{ND}(\alpha \to \beta) and ΣNDα\Sigma \vdash_{ND} \alpha, then ΣNDβ\Sigma \vdash_{ND} \beta (αβ) αβ\dfrac{(\alpha \to \beta) \text{ } \alpha}{\beta}
\to-introduction (i\to_i) If Σ,αNDβ\Sigma, \alpha \vdash_{ND} \beta, then ΣND(αβ)\Sigma \vdash_{ND} (\alpha \to \beta) αβαβ\dfrac{\boxed{\begin{aligned}&\alpha \\ &\vdots \\ &\beta\end{aligned}}}{\alpha \to \beta}
\land-elimination If ΣNDαβ\Sigma \vdash_{ND} \alpha \land \beta, then ΣNDα\Sigma \vdash_{ND} \alpha (or ΣNDβ\Sigma \vdash_{ND} \beta) αβααββ\dfrac{\alpha \land \beta}{\alpha} \quad \dfrac{\alpha \land \beta}{\beta}
\land-introduction If ΣNDα\Sigma \vdash_{ND} \alpha and ΣNDβ\Sigma \vdash_{ND} \beta, then ΣND(αβ)\Sigma \vdash_{ND} (\alpha \land \beta) αβαβ\dfrac{\alpha \quad \beta}{\alpha \land \beta}
\lor-elimination If Σ,α1NDβ\Sigma, \alpha_1 \vdash_{ND} \beta and Σ,α2NDβ\Sigma, \alpha_2 \vdash_{ND} \beta, then Σ,(α1α2)NDβ\Sigma, (\alpha_1 \lor \alpha_2) \vdash_{ND} \beta (α1α2)α1βα2ββ\dfrac{(\alpha_1 \lor \alpha_2) \quad \boxed{\begin{aligned}&\alpha_1 \\ &\vdots \\ &\beta\end{aligned}} \quad \boxed{\begin{aligned}&\alpha_2 \\ &\vdots \\ &\beta\end{aligned}}}{\beta}
\lor-introduction If ΣNDα\Sigma \vdash_{ND} \alpha, then ΣND(αβ)\Sigma \vdash_{ND} (\alpha \lor \beta) and ΣND(βα)\Sigma \vdash_{ND} (\beta \lor \alpha) α(αβ)α(βα)\dfrac{\alpha}{(\alpha \lor \beta)} \quad \dfrac{\alpha}{(\beta \lor \alpha)}
¬\neg-introduction If Σ,αND \Sigma, \alpha \vdash_{ND} \ \perp, then ΣND¬α\Sigma \vdash_{ND} \neg \alpha α¬α\dfrac{\boxed{\begin{aligned}&\alpha \\ &\vdots \\ &\perp\end{aligned}}}{\neg \alpha}
\perp-elimination If ΣND \Sigma \vdash_{ND} \ \perp, then ΣNDα\Sigma \vdash_{ND} \alpha α\dfrac{\perp}{\alpha}
\perp-introduction If ΣNDα\Sigma \vdash_{ND} \alpha and ΣND¬α\Sigma \vdash_{ND} \neg \alpha, then ΣND \Sigma \vdash_{ND} \ \perp α¬α\dfrac{\alpha \quad \neg \alpha}{\perp}
¬¬\neg \neg-elimination If ΣND¬¬α\Sigma \vdash_{ND} \neg \neg \alpha, then ΣNDα\Sigma \vdash_{ND} \alpha ¬¬αα\dfrac{\neg \neg \alpha}{\alpha}

3 Derived Rules

3.1 Modus Tollens 否定后件

{(pq),(¬q)ND(¬p)}noted as(pq)¬q¬p\{(p \to q), (\neg q) \vdash_{ND}(\neg p)\} \quad \text{noted as} \quad \dfrac{(p \to q) \quad \neg q}{\neg p}

Proof:

1.(pq)Premise2.(¬q)  Premise3.p  Assumption4.q e:1,35.    i:2,46.¬p ¬i:36\begin{aligned} &1. \quad (p \to q) \quad \text{Premise} \\ &2. \quad (\neg q) \quad \quad \ \ \text{Premise} \\ &\boxed{ \begin{aligned} &3. \quad p \quad \quad \quad \ \ \text{Assumption} \\ &4. \quad q \quad \quad \quad \ \to_e: 1, 3 \\ &5. \ \ \perp \quad \quad \quad \ \ \perp_i: 2, 4 \\ \end{aligned} }\\ &6. \quad \neg p \quad \quad \quad \ \neg_i: 3-6 \end{aligned}

3.2 Double Negation Introduction

Σ,αND(¬(¬α))noted asᬬα\Sigma, \alpha \vdash_{ND} (\neg(\neg \alpha)) \quad \text{noted as} \quad \dfrac{\alpha}{\neg \neg \alpha}

Proof:

1.αPremise2.(¬α) Assumption3.     i:1,24.(¬(¬α))¬i:23\begin{aligned} &1. \quad \alpha \quad \quad \quad \text{Premise} \\ &\boxed{ \begin{aligned} &2. \quad (\neg \alpha) \quad \ \text{Assumption} \\ &3. \ \ \perp \quad \quad \ \ \ \perp_i: 1, 2\\ \end{aligned} }\\ &4. (\neg(\neg \alpha)) \quad \neg_i: 2-3 \end{aligned}

3.3 Reductio Ad Absurbum 归谬法

¬α  α\dfrac{\boxed{\begin{aligned}&\neg \alpha \\ &\ \ \vdots \\ &\perp\end{aligned}}}{ \alpha}

3.4 Tertiam Non Datur 排中律

ND(α(¬α))\emptyset \vdash_{ND} (\alpha \lor (\neg \alpha))

Proof:

1.¬(α(¬α))Assumption2.α  Assumption3.(α¬α) i:24.i:1,35.¬α¬i:246.(α¬α)  i:57. i:1,68.(α¬α)   Reductio ad Absurbum: 1-7\begin{aligned} &\boxed{ \begin{aligned} &1. \quad \neg (\alpha \lor (\neg \alpha)) \quad \quad \text{Assumption} \\ &\boxed{ \begin{aligned} &2. \quad \alpha \quad \quad \quad \quad \quad \quad \ \ \text{Assumption} \\ &3. \quad (\alpha \lor \neg \alpha) \quad \quad \quad \ \lor_i: 2 \\ &4. \quad \perp \quad \quad \quad \quad \quad \quad \perp_i: 1, 3 \\ \end{aligned} }\\ &5. \quad \neg \alpha \quad \quad \quad \quad \quad \quad \neg_i: 2-4 \\ &6. \quad (\alpha \lor \neg \alpha) \quad \quad \quad \ \ \lor_i: 5 \\ &7. \quad \perp \quad \quad \quad \quad \quad \quad \ \perp_i: 1, 6 \end{aligned}}\\ &8. \quad (\alpha \lor \neg \alpha) \quad \quad \quad \ \ \ \text{Reductio ad Absurbum: 1-7} \end{aligned}


Mathematical logic (3) Natural deduction 自然演绎
http://example.com/2024/06/20/mml-3/
作者
Zaddle
发布于
2024年6月20日
更新于
2024年6月20日
许可协议