本文最后更新于 2024年6月20日 下午
1. Language 语言组成
1.1 Alphabet 符号系统
Σ={(,),¬,∧,∨,→,↔,p,q,r,…}
- Atoms p,q,r,s,… are formulas.
- If A,B are formulas, then (¬A),(A∧B),(A∨B),(A→B),(A↔B) are also formulas.
2. Inference Rules 推理规则
2.1 Reflectivity 自反
Σ∪{α}⊢α
2.2 Rules for More
Name |
⊢-notation |
inference notation |
→-elimination (→e) |
If Σ⊢ND(α→β) and Σ⊢NDα, then Σ⊢NDβ |
β(α→β) α |
→-introduction (→i) |
If Σ,α⊢NDβ, then Σ⊢ND(α→β) |
α→βα⋮β |
∧-elimination |
If Σ⊢NDα∧β, then Σ⊢NDα (or Σ⊢NDβ) |
αα∧ββα∧β |
∧-introduction |
If Σ⊢NDα and Σ⊢NDβ, then Σ⊢ND(α∧β) |
α∧βαβ |
∨-elimination |
If Σ,α1⊢NDβ and Σ,α2⊢NDβ, then Σ,(α1∨α2)⊢NDβ |
β(α1∨α2)α1⋮βα2⋮β |
∨-introduction |
If Σ⊢NDα, then Σ⊢ND(α∨β) and Σ⊢ND(β∨α) |
(α∨β)α(β∨α)α |
¬-introduction |
If Σ,α⊢ND ⊥, then Σ⊢ND¬α |
¬αα⋮⊥ |
⊥-elimination |
If Σ⊢ND ⊥, then Σ⊢NDα |
α⊥ |
⊥-introduction |
If Σ⊢NDα and Σ⊢ND¬α, then Σ⊢ND ⊥ |
⊥α¬α |
¬¬-elimination |
If Σ⊢ND¬¬α, then Σ⊢NDα |
ᬬα |
3 Derived Rules
3.1 Modus Tollens 否定后件
{(p→q),(¬q)⊢ND(¬p)}noted as¬p(p→q)¬q
Proof:
1.(p→q)Premise2.(¬q) Premise3.p Assumption4.q →e:1,35. ⊥ ⊥i:2,46.¬p ¬i:3−6
3.2 Double Negation Introduction
Σ,α⊢ND(¬(¬α))noted as¬¬αα
Proof:
1.αPremise2.(¬α) Assumption3. ⊥ ⊥i:1,24.(¬(¬α))¬i:2−3
3.3 Reductio Ad Absurbum 归谬法
α¬α ⋮⊥
3.4 Tertiam Non Datur 排中律
∅⊢ND(α∨(¬α))
Proof:
1.¬(α∨(¬α))Assumption2.α Assumption3.(α∨¬α) ∨i:24.⊥⊥i:1,35.¬α¬i:2−46.(α∨¬α) ∨i:57.⊥ ⊥i:1,68.(α∨¬α) Reductio ad Absurbum: 1-7